skip to main content


Search for: All records

Creators/Authors contains: "Maity, Shovan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Applications like Connected Healthcare through physiological signal monitoring and Secure Authentication using wearable keys can benefit greatly from battery-less operation. Low power communication along with energy harvesting is critical to sustain such perpetual battery-less operation. Previous studies have used techniques such as Tribo-Electric, Piezo-Electric, RF energy harvesting for Body Area Network devices, but they are restricted to on-body node placements. Human body channel is known to be a promising alternative to wireless radio wave communication for low power operation [1-4], through Human Body Communication, as well as very recently as a medium for power transfer through body coupled power transfer [5]. However, channel length (L) dependency of the received power makes it inefficient for L>40cm. There have also been a few studies for low power communication through the human body, but none of them could provide sustainable battery-less operation. In this paper, we utilize Resonant Electro Quasi-Static Human Body Communication (Res-EQS HBC) with Maximum Resonance Power Tracking (MRPT) to enable channel length independent whole-body communication and powering (Fig.1). We design the first system to simultaneously transfer Power and Data between a HUB device and a wearable through the human body to enable battery-less operation. Measurement results show 240uW, 28uW and 5uW power transfer through the body in a MachineMachine (large devices with strong ground connection) Tabletop (small devices kept on a table, as in [5]) and Wearable-Wearable (small form factor battery operated devices) scenario respectively, independent of body channel length, while enabling communication with a power consumption of only 2.19uW. This enables >25x more power transfer with >100x more efficiency compared to [5] for Tabletop and 100cm Body distance by utilizing the benefits of EQS. The MRPT loop automatically tracks device and posture dependent resonance point changes to maximize power transfer in all cases. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Communication during touch provides a seamless and natural way of interaction between humans and ambient intelligence. Current techniques that couple wireless transmission with touch detection suffer from the problem of selectivity and security, i.e., they cannot ensure communication only through direct touch and not through close proximity. We present  BodyWire-HCI , which utilizes the human body as a wire-like communication channel, to enable human–computer interaction, that for the first time, demonstrates selective and physically secure communication strictly during touch. The signal leakage out of the body is minimized by utilizing a novel, low frequency Electro-QuasiStatic Human Body Communication (EQS-HBC) technique that enables interaction strictly when there is a conductive communication path between the transmitter and receiver through the human body. Design techniques such as capacitive termination and voltage mode operation are used to minimize the human body channel loss to operate at low frequencies and enable EQS-HBC. The demonstrations highlight the impact of  BodyWire-HCI in enabling new human–machine interaction modalities for variety of application scenarios such as secure authentication (e.g., opening a door and pairing a smart device) and information exchange (e.g., payment, image, medical data, and personal profile transfer) through touch (https://www.youtube.com/watch?v=Uwrig2XQIH8). 
    more » « less
  5. null (Ed.)
    Human Body Communication has shown great promise to replace wireless communication for information exchange between wearable devices of a body area network. However, there are very few studies in literature, that systematically study the channel loss of capacitive HBC for wearable devices over a wide frequency range with different terminations at the receiver, partly due to the need for miniaturized wearable devices for an accurate study. This paper, for the first time, measures the channel loss of capacitive HBC from 100KHz to 1GHz for both high-impedance and 50Ω terminations using wearable, battery powered devices; which is mandatory for accurate measurement of the HBC channel-loss, due to ground coupling effects. Results show that high impedance termination leads to a significantly lower channel loss (40 dB improvement at 1MHz), as compared to 50Ω termination at low frequencies. This difference steadily decreases with increasing frequency, until they become similar near 80MHz. Beyond 100MHz inter-device coupling dominates, thereby preventing accurate measurements of channel loss of the human body. The measured results provide a consistent wearable, wide-frequency HBC channel loss data and could serve as a backbone for the emerging field of HBC by aiding in the selection of an appropriate operation frequency and termination. 
    more » « less